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Abstract Purpose: The antitumor effect of paclitaxel
was investigated against murine tumors and human xe-
nografts in combination with the hypoxia-selective cy-
totoxin NLCQ-1. Methods: The tumor regrowth assay
was used as the endpoint and an optimal administration
schedule was followed, based on previous studies. In
certain cases the hypoxia-selective cytotoxin tirapaz-
amine (TPZ) was included for comparison. NLCQ-1 was
given i.p. in saline, whereas paclitaxel was given i.p.
(C3H) or i.v. (athymic mice) in an appropriately
formulated vehicle. Results: In the SCCVII/C3H model,
when NLCQ-1 (10 mg/kg) was given 90 min after pac-
litaxel (8 mg/kg) twice a day 4 h apart on days 0 and 9,
tumor regrowth delay was increased by 10.3 days com-
pared to paclitaxel alone, at fivefold the original tumor
size. This corresponds to 1.51 log cell kill. In the same
study, TPZ resulted in 4.6 days of extra delay compared
to paclitaxel alone, which corresponds to 0.91 log cell
kill. Paclitaxel alone resulted in 3.9 days of tumor
growth delay compared to control, or 0.42 log cell kill,
but this delay was not statistically significant (P <0.2).
In the FSallC/C3H model, when NLCQ-1 (10 mg/kg)
was given 90 min after paclitaxel (12 mg/kg) on day 0,
tumor regrowth delay was increased by 5.8 days com-
pared to paclitaxel alone, at 20-fold the original tumor
size. In athymic nude mice bearing PC-3 prostate xe-
nografts, NLCQ-1 (10 mg/kg) given 90 min before
paclitaxel (8 mg/kg) for five consecutive days, increased
tumor regrowth delay by 5.6 days compared to paclit-
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axel alone, at threefold the original tumor size. This
corresponds to 0.95 log cell kill whereas the log cell kill
for paclitaxel alone was 0.52. No improvement was
observed in the tumor regrowth delay at any lower
paclitaxel doses given in combination with NLCQ-1. No
concurrent enhancement in paclitaxel-induced toxicity
was observed in any of the combination treatments or in
any of the models tested. NLCQ-1 alone was ineffective
at the doses given. Conclusions: These results suggest
that an enhancement in tumor growth delay can be
achieved both in murine tumors and in human xeno-
grafts due to a synergistic interaction between NLCQ-1
and paclitaxel.
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Introduction

One of the recognized microenvironmental features of
solid tumors is the occurrence of regions of hypoxia
which are resistant to ionizing radiation and chemo-
therapy and thus can negatively affect cure rates [4, 15,
20, 46]. However, tumor hypoxia also presents oppor-
tunities for the use of compounds that are selectively
activated under hypoxic conditions, known as biore-
ductive drugs [50]. Although hypoxia-selective cytotox-
ins have been traditionally used in combination with
radiation, numerous preclinical data suggest that en-
hanced antitumor activity and often a therapeutic ben-
efit can be obtained when such compounds interact with
certain conventional chemotherapeutic agents [6, 7, 12,
13, 21, 22, 23, 31, 34, 35, 36, 47, 48]. Recent clinical trials
of the hypoxic cytotoxin tirapazamine (3-amino-1,2,4-
benzotriazine-1,4-dioxide, SR-4233, TPZ) combined
with cisplatin (cisDDP) have shown that a therapeutic
gain can also be achieved in the clinic in terms of overall
response rates and survival [27, 52, 54].
4-[3-(2-Nitro-1-imidazolyl)-propylamino]-7-chloro-
quinoline hydrochloride (NLCQ-1) is a 2-nitroimidaz-
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ole-based hypoxia-selective cytotoxin, that does not fall
into the category of classical nitroimidazole-containing
bioreductive drugs because it possesses two unique
characteristics. First, it binds to DNA through a weak
intercalation [38]. This permits fast dissociation kinetics,
extravascular diffusion, penetration to hypoxic regions
of a tumor and thus effectiveness in vivo. Second, it
demonstrates increasing hypoxic potency and selectivity
with time, like the so-called ‘bis-bioreductive agents’,
compounds bearing two reducible centers [16, 38]. Thus,
in agreement with the above, NLCQ-1 synergistically
enhances the effect of radiation against hypoxic cells in
vitro and murine tumors in vivo [39]. Furthermore, it
optimizes the effect of radioimmunotherapy in human
xenografts [2]. Importantly, NLCQ-1 substantially en-
hances, in a schedule-dependent manner, the antitumor
effect of alkylating agents, as well as 5-fluorouracil
(5FU) and paclitaxel against murine tumors, without a
concomitant enhancement in bone marrow or hypoxia-
dependent retinal toxicity (unpublished results; [37, 40,
42, 43]). Moreover, studies at the NCI have shown that
NLCQ-1 exhibits good stability in human plasma and
favorable pharmacokinetics in mice [49].

Potentiation by nitroimidazole-based bioreductive
drugs has been traditionally investigated with alkylating
chemotherapeutic agents. However, as has been men-
tioned above, enhancement of tumor response is also
observed by combining NLCQ-1 with the thymidylate
synthase inhibitor SFU or the antimitotic drug paclit-
axel, against EMT6 and SCCVII tumors in mice [40, 42].
Paclitaxel, because of its different mechanism of action
and its significant activity against a variety of cancers,
including late-stage ovarian [26], advanced lung [10] and
head and neck carcinomas [11], that is tumors with
potential hypoxic regions, could be explored as a new
opportunity for combination treatments with hypoxia-
selective cytotoxins.

In our previous studies between NLCQ-1 and pac-
litaxel, using the clonogenic assay we demonstrated an
optimal synergistic interaction when NLCQ-1 is ad-
ministered 1-3 h after paclitaxel [40, 42]. In the present
work we further investigated interactions between
NLCQ-1 and paclitaxel against murine tumors and hu-
man xenografts using the tumor regrowth assay, and we
demonstrated that tumor specificity and administration
time are important factors for paclitaxel potentiation by
NLCQ-1. The studies against murine tumors were per-
formed in our laboratory and the studies against human
xenografts were performed at the NCI under the RAID
(Rapid Access to Intervention Development) Program.

Materials and methods

Drugs

NLCQ-1 (provided by the Drug Synthesis and Chemistry Branch,
Developmental Therapeutics Program, Division of Cancer Treat-
ment and Diagnosis, National Cancer Institute) and TPZ (provided
by Sanofi-Winthrop, Malvern, Pa.) were dissolved in saline at 1 and

0.75 mg/ml, respectively. The vehicle for paclitaxel (Bristol-Myers
Squibb, Princeton, N.J.) was 8% EtOH plus 8% Cremophor plus
84% saline (murine tumors) or 12.5% EtOH plus 12.5% Cremo-
phor plus 75% saline (human xenografts). In the studies against
murine tumors, all drugs were injected intraperitoneally (i.p.) on
the basis of animal body weight and the total injected volume was
< 0.5 ml. A hyaluronidase solution (Wyeth Laboratories, Phila-
delphia, Pa.) was administered i.p. to the mice at 15 U/mouse in
0.05 ml saline immediately after paclitaxel administration, as a
local adjuvant, to reduce paclitaxel ulcerative toxicity [8]. In the
studies against human xenografts, paclitaxel was administered in-
travenously (i.v.) at 0.1 ml/10 g body weight and NLCQ-1 was
given i.p. at 0.1 ml/10 g body weight.

Mice and tumors

FSalIC tumor cells (2x10° cells in 0.2 ml; a gift from Dr. B. Tei-
cher, Dana-Farber Cancer Institute, Boston, Mass.) [51] or
SCCVII squamous carcinoma tumor cells (5x10% cells in 0.05 ml; a
gift from Dr. D. Siemann, University of Florida, Gainesville, Fl.)
[18] were inoculated subcutaneously into the leg of 18-20-g male or
female C3H mice (Jackson Laboratories), respectively, housed
under germ-free conditions. All studies were conducted according
to the guidelines set by the Evanston Northwestern Healthcare
Institutional Animal Care. Eight mice per group were used.

Subcutaneous human xenografts were established from PC-3
human tumor cell lines (NCI tumor repository at Frederick, Md.)
which were cultured in RPMI-1640 medium supplemented with
10% heat-inactivated fetal bovine serum (HyClone). Cells were
implanted subcutaneously (s.c.) (1.0x107 cells/0.1 ml/mouse) into
male athymic nude mice (NCr nu/nu; obtained from the NCI An-
imal Program, Frederick, Md.) and on the rib cage near the axilla.
Mice were housed in sterile polycarbonate filter-capped Microiso-
lator cages (Laboratory Products), maintained in a barrier facility
on a 12-h light/dark cycle, and provided with sterilized food and
water ad libitum [44]. There were 10 animals in each treatment
group and 20 animals in the control group. The growth of the solid
tumors was monitored using in situ caliper measurements to de-
termine tumor mass. Weights (milligrams) were calculated from
measurements (millimeters) of two perpendicular dimensions
(length and width) using the formula for a prolate ellipsoid and
assuming a specific gravity of 1.0 g/em? [14].

Interaction with paclitaxel
Murine tumors

In the studies against FSallC tumors, NLCQ-1 was given at 10 mg/
kg (0.027 mmol/kg) and TPZ at 30 or 23 mg/kg (0.168 or
0.129 mmol/kg) which represent 28% [37] and 38% or 28% [7] of
their single LDs, values, respectively. Each bioreductive drug was
given once, 3 h or 1.5 h after a single paclitaxel dose. In the studies
against SCCVII tumors, NLCQ-1 and TPZ were given twice a day
4 h apart at equitoxic doses of 10 and 23 mg/kg, respectively, at the
optimal time intervals (determined previously) after paclitaxel, on
day 0, or on days 0 and 9. To assess the response of the tumors to
treatment, their size was measured every day or every other day
using a vernier caliper. Tumor volumes were calculated using the
formula V=n(xxyxz)/6, where x, y and z are the three measured
orthogonal diameters minus folded skin thickness (1 mm). At the
time of treatment, the mean volumes were in the ranges 225—
292 mm? or 111-134 mm® (FSaIIC) and 58-88 mm® (SCCVII).
The doubling time of untreated control tumors (Td) was calculated
as the median of the time interval for individual tumors to increase
in size from 200 to 400 mm® (usually a period of exponential
growth), and was found to be 2.8 or 2.1 days (FSalIC) and 2.1 or
2.8 days (SCCVII). Mean tumor volumes (V) were expressed as a
fraction of their mean volume on the day of treatment (V). Tumor
growth delay was determined at a relative tumor volume of 20
(FSalIC) or 5 (SCCVII). Also, the net log cell kill corresponding to
this growth delay was calculated from the formula:



Log cell kill =0.301 x [(T — C) — duration of treatment]/7d (1)
where T and C are the median times in days for treated and control
groups, respectively, to attain the specified size [44]. The duration
of treatment was zero in the experiments with murine tumors.
Synergism and additivity were calculated from the log cell kills [56].
Multiple comparisons between groups were performed using Stu-
dent’s z-test.

Human xenografts

In the studies against PC-3 xenografts, NLCQ-1 was given i.p. at
10 mg/kg 1.5 h before an i.v. dose of paclitaxel for five consecutive
days starting on day 11 after tumor implantation. Paclitaxel was
given at three doses: 8, 5.4 and 3.6 mg/kg. On the first day of
treatment, the median tumor weights ranged from 46 to 151 mg
(early-stage s.c. models). The Td of PC-3 was 3.9 days for this
experiment. Tumor size and body weights were obtained approxi-
mately twice per week. Antitumor activity was assessed by calcu-
lating optimal %T/C values from the formula:

%T/C = (AT/AC)x 100 where AT >0 or @)
= (AT/T;) x 100 where AT <0

where AT and AC are changes in tumor weight in treated and
control groups, respectively, and obtained by subtracting the me-
dian tumor weight on the day of first treatment (staging day) from
the median tumor weight on the observation day, and Ty is the
median tumor weight at the start of treatment [44]. Tumor growth
delay was determined at a relative tumor weight of 3 and net log
cell kill was determined from the Eq. 1. Both drug-related deaths
(DRDs) and maximum percent relative mean net body weight
losses were determined [44].

Results

Two experiments were performed in mice bearing
FSalIC tumors. In the initial experiment (not shown)
paclitaxel, NLCQ-1 and TPZ were given once at 20, 10
and 30 mg/kg, respectively, and each bioreductive
compound was administered 3 h after paclitaxel. No
signs of toxicity were observed in the groups treated with
NLCQ-1 or TPZ alone. Unfortunately, 20 mg/kg pac-
litaxel was too toxic, resulting in > 50% deaths by day 8
in the groups receiving paclitaxel alone or in combina-
tion. Even though the extent of mortality at such an
early stage did not allow definite conclusions, the results
still suggested an additional tumor growth delay in the
NLCQ-1 plus paclitaxel combination group compared
to the paclitaxel-alone group.

Table 1 Time for the FSallC tumors to grow to 20 times their
original volume (111-134 mm?), tumor growth delay relative to
saline-treated control, and corresponding log kill. Paclitaxel,
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When the paclitaxel dose was decreased to 12 mg/kg
and NLCQ-1 and TPZ were administered once in
FSalIC tumor-bearing mice 1.5 h after paclitaxel at
equitoxic doses of 10 and 23 mg/kg, respectively, pac-
litaxel-induced toxicity was still present. Thus, 37.5%
deaths occurred in the paclitaxel-alone group and in the
NLCQ-1 plus paclitaxel and TPZ plus paclitaxel groups
by day 9, 8, and 10, respectively. However, no further
lethality or any other type of toxicity occurred until the
end of the experiment. The responses of FSallC tumors
to paclitaxel with and without NLCQ-1 or TPZ treat-
ment are summarized in Table 1. It is apparent that
significant tumor growth delay occurred only in the
NLCQ-1 plus paclitaxel group. This delay was about
6 days compared to the control group and corresponded
to a 0.9 log cell kill, which is not insignificant consid-
ering that the paclitaxel was given only once and in an
inactive dose.

Since paclitaxel was too toxic at 20 mg/kg and inac-
tive at 12 mg/kg in the experiments described above, in
our following experiment against SCCVII tumors pac-
litaxel was given at 2x8 mg/kg 4 h apart on day 0.
NLCQ-1 or TPZ were given at 10 and 23 mg/kg 1.5 and
2 h after paclitaxel, respectively. No signs of toxicity or
lethality were observed with this regimen up to day 20
after treatment. The deaths by day 20 were associated
with large tumor volumes and occurred in the control
group (25%) and the paclitaxel plus NLCQ-1 group
(25%). The responses of SCCVII tumors to paclitaxel
and paclitaxel plus NLCQ-1 or TPZ are shown in
Table 2. Statistically significant tumor growth delay
compared to the control group was observed in the
paclitaxel-alone, TPZ-alone, paclitaxel plus NLCQ-1
and paclitaxel plus TPZ groups (Table 2). The most
pronounced tumor growth delay occurred in the paclit-
axel plus NLCQ-1 group (5.7 days or 0.82 log cell kill).
Since NLCQ-1 alone did not produce any tumor growth
delay, it is apparent that the delay observed in combi-
nation with paclitaxel was due to potentiation. Once
again, the log cell kill of 0.82 was not very pronounced
but it could be considered biologically significant be-
cause it occurred with only one treatment. TPZ alone
was toxic against SCCVII tumors yielding 1.7 days tu-
mor growth delay. However, in combination with pac-
litaxel, the corresponding delay was 4.4 days, similar to

NLCQ-1 and TPZ were given at 12, 10 and 23 mg/kg, respectively,
once on day 0. Eight mice per group were used. The median tumor
doubling time was 2.1 days

Treatment group Time (days, mean +SD) Tumor growth delay (days) Log kill
P value

Control (saline) 15.6+3.7 0 -
Paclitaxel 16.5+3.7 >0.05 vs control 0.9 0.13
NLCQ-1 142+2.0 >0.05 vs control -1.4 -0.20
TPZ 16.1£2.6 >0.05 vs control 0.5 0.07
Paclitaxel plus NLCQ-1 1.5 h later 219+1.5 <0.02 vs paclitaxel alone 6.3 0.90
Paclitaxel plus TPZ 1.5 h later 14.1£3.5 >0.05 vs control -1.5 -0.22
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Table 2 Time for the SCCVII tumors to grow to five times their
original volume (62-78 mm?), tumor growth delay relative to sa-
line-treated control, and corresponding log cell kill. Paclitaxel,

NLCQ-1 and TPZ were given twice a day 4 h apart on day 0 at 8,
10 and 23 mg/kg, respectively. Eight mice per group were used. The
median tumor doubling time was 2.1 days

Treatment group Time (days, mean £ SD) Tumor growth delay (days) Log kill
P value

Control (saline) 7.6+0.6 0 -
Paclitaxel 10.6£1.2 <0.001 vs control 3 0.43
NLCQ-1 7.7+1.1 >0.05 vs control 0.1 0.01
TPZ 9.3+0.6 <0.001 vs control 1.7 0.24
Paclitaxel plus NLCQ-1 1.5 h later 13.3£2.0 <0.02 vs paclitaxel alone 5.7 0.82
Paclitaxel plus TPZ 2 h later 12.0+£0.5 <0.05 vs paclitaxel alone 44 0.63

the delay that would be expected from an additive effect
between paclitaxel and TPZ (Table 2).

In a second experiment performed against SCCVII
tumors, a regimen similar to that above was followed
with the exception that the treatment was repeated on
day 9 after the first treatment. Paclitaxel was well tol-
erated when it was given twice a day 4 h apart on days 0
and 9. Thus, 12.5% lethality (one of eight mice died) was
observed by day 14 after treatment in the paclitaxel-
alone, the NLCQ-1 plus paclitaxel and the TPZ plus
paclitaxel groups, but lethality did not increase there-
after. A death was also observed by day 13 in the TPZ-
alone group. However, no other signs of toxicity were
observed and the mean mouse weights in all groups were
not significantly different. The responses of SCCVII
tumors to paclitaxel and NLCQ-1/TPZ plus paclitaxel
treatments are shown in Fig. 1. It is apparent that tumor
volume decreased significantly after the first treatment in
the NLCQ-1 plus paclitaxel group. Thus, on day 6 after

treatment the mean tumor volume in the paclitaxel plus
NLCQ-1 group was 28% of its initial value (day 0).
Similarly, the tumor volume in the same group had de-
creased after the second treatment (day 9) to 53% of its
initial value (day 0). The only other group in which tu-
mor volume loss was seen after the first treatment was
the TPZ plus paclitaxel group. Thus, on day 3, the tu-
mor volume in this group had decreased to 85% of its
initial value (day 0).

Tumor growth delays and corresponding log cell kills
are shown in Table 3. Even though some tumor growth
delay was observed in the paclitaxel-alone, the NLCQ-1-
alone and the TPZ-alone treated groups compared to
the untreated control group, there were no significant
differences between each of these groups and the control
group (P>0.5). On the contrary, there was significant
tumor growth delay between the NLCQ-1 plus paclitaxel
and the paclitaxel-alone groups (P <0.01), and between
the TPZ plus paclitaxel and the paclitaxel-alone groups

Fig. 1 Response of SCCVII
tumors to paclitaxel (Taxol),
NLCQ-1, TPZ, and paclitaxel
plus NLCQ-1 or TPZ. Relative
mean tumor volumes are plot-
ted as a function of time after
first treatment. NLCQ-1 and
TPZ were given at 10 and

23 mg/kg (equitoxic doses) 1.5
or 2 h, respectively, after pac-
litaxel twice a day 4 h apart on

10?

10"

days 0 and 9. Tumor growth
delay was evaluated at fivefold
the original tumor volume. Ini-
tial mean tumor volumes in the
groups were: control

68+ 11 mm?>, NLCQ-1 alone
80+ 18 mm?, paclitaxel alone
73+ 19 mm?, paclitaxel plus
NLCQ-1 72+ 15 mm?’, TPZ
alone 58 +25 mm?®, and paclit-
axel plus TPZ 88 + 18 mm”>.
Eight mice per point were used
(bars SD)

10°
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Table 3 Time for the SCCVII tumors to grow to five times their
original volume (58-88 mm?), tumor growth delay relative to sa-
line-treated control, and corresponding log cell kill. Paclitaxel,
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NLCQ-1 and TPZ were given twice a day 4 h apart on day 0 and
day 9 at 8, 10 and 23 mg/kg, respectively. Eight mice per group
were used. The median tumor growth delay was 2.8 days

Treatment group Time (days, mean £ SD) Tumor growth delay (days) Log kill
P value

Control (saline) 5.1+3.2 0 -
Paclitaxel 9.0+4.6 >0.05 vs control 39 0.42
NLCQ-1 9.0+£3.0 >0.05 vs control 3.9 0.42
TPZ 7.2+4.6 >0.05 vs control 2.1 0.23
Paclitaxel plus NLCQ-1 1.5 h later 19.3£5.2 <0.01 vs paclitaxel alone 14.2 1.53
Paclitaxel plus TPZ 2 h later 13.6£1.5 <0.05 vs paclitaxel alone 8.5 0.91

(P<0.05). Thus, 14.2 and 8.5 days delay, compared to
the control, were seen in the NLCQ-1 plus paclitaxel and
the TPZ plus paclitaxel groups, which correspond to
1.53 and 0.91 log cell kills, respectively.

Finally, the responses of PC-3 human xenografts to
paclitaxel and paclitaxel plus NLCQ-1 treatments are
shown in Fig. 2 and Table 4. All mice had developed
tumors by the day of treatment. No significant tumor
growth delays were observed at the lower paclitaxel doses
alone or in combination with NLCQ-1. Similarly,
NLCQ-1 alone did not cause any tumor response.
However, paclitaxel at 8 mg/kg daily for 5 days was re-
sponsible for 11.7 days of tumor growth delay compared
to vehicle treatment. Furthermore, by combining the
higher paclitaxel dose with NLCQ-1, 17.3 days of tumor
growth delay was achieved. The corresponding log cell
kills were 0.52 (paclitaxel alone) and 0.95 (combination
treatment). Tumor growth delay and log cell kill were
calculated at threefold the original tumor size (Table 4).

Fig. 2 Response of PC-3 102 R

Optimal %T/C values were also calculated for all
treated groups and are shown together with toxicity
parameters in Table 4. Even though this was an early
stage experiment, %T/C values were determined as
%AT/AC values because the median tumor weight in the
control group was 46 mg, that is <63-200 mg [44]. No
drug-related deaths were observed in any of the treated
groups. Maximum percent relative mean net weight
losses were similar in the paclitaxel-alone and the pac-
litaxel plus NLCQ-1 groups, and were also comparable
to that of the control group (PC-3-related weight loss).

Discussion

NLCQ-1 represents a newer class of nitroimidazole-
based hypoxia-selective cytotoxins that bind noncova-
lently to DNA through weak intercalation [32, 33, 38].
Such binding offers the advantage of mobility around

human xenografts to paclitaxel,
NLCQ-1, and paclitaxel plus
NLCQ-1. Relative median
tumor weights are plotted as a
function of time. NLCQ-1 was
given i.p. daily for 5 days 1.5 h
before paclitaxel. Paclitaxel was
given i.v. daily for 5 days.
Treatment was initiated on

day 11. Tumor growth delay
was evaluated at threefold the
original tumor weight. Initial
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Table 4 Time for the PC-3 human xenografts to grow to three
times their original weight (46-151 mg), and other parameters re-
garding the effect of the treatment. Treatment was administered
daily for 5 days and was initiated on day 11 after xenograft inoc-
ulation. Paclitaxel was given i.v. in the vehicle (12.5% EtOH,

12.5% Cremophor, 75% saline). NLCQ-1 was given i.p. and, in
combination with paclitaxel, 1.5 h before each paclitaxel dose. Ten
mice were used in the treated groups and 20 mice in the control
group. The median tumor growth delay was 3.9 days

Treatment group Median time (days) Tumor growth delay (days) Log kill Optimal %T/C (day)
Control (vehicle) 14.5 -
Paclitaxel alone (mg/kg)

8 26.2 11.7 0.52 28 (19)

5.4 16.0 1.5 -0.27 83 (26)

3.6 15.7 1.2 -0.29 99 (19)

NLCQ-1 (10 mg/kg)

Alone 14.5 0.0 —0.39 57 (33)
Plus paclitaxel 8 mg/kg 31.8 17.3 0.95 -4 (26)
Plus paclitaxel 5.4 mg/kg 16.8 2.3 —0.21 79 (26)
Plus paclitaxel 3.6 mg/kg 16.0 1.5 -0.27 75 (33)

the site of action (DNA) and offers improved hypoxic
selectivity because it prevents the hindering of topoi-
somerases, polymerases or other DNA-interacting en-
zymes [32] which could cause a nonbioreduction-related
toxicity. In addition, binding through weak intercalation
may allow better extravascular diffusion as has been
shown in the paradigm of 5-nitraquine versus nitracrine
[5, 55]. Better penetration translates into greater effec-
tiveness in vivo, provided that the bioreductive com-
pound has an optimal metabolic rate constant [17]. Our
present study showed once again that NLCQ-1 can in-
deed be effective in vivo as a chemosensitizer. From the
results against the murine tumors, we can conclude that
the interaction between NLCQ-1 and paclitaxel was
synergistic [56]. Thus, the log tumor-cell kill in the
NLCQ-1 plus paclitaxel group was always greater than
the sum of the log cell kills produced by NLCQ-1 and
paclitaxel alone (Tables 1, 2, and 3). In the case of the
TPZ plus paclitaxel combination treatment, the effect
was seemingly additive (see log cell kill in Table 2) or
slightly synergistic (Table 3).

In general, the effects of NLCQ-1 and TPZ alone
against the murine tumors were insignificant or minimal
(Tables 1, 2, and 3), perhaps because of the small initial
tumor volumes which could not guarantee sufficient
hypoxic fractions. It is known that FSalIC tumors do
not develop significant hypoxia unless they grow above
200 mm? [30]. Similarly, SCCVII tumors usually contain
about 15-25% radiobiologically h;/poxic cells at vol-
umes ranging from 200 to 600 mm” [1, 9], whereas the
initial tumor volume in our present study ranged from
58 to 88 mm®. Paclitaxel alone at the nontoxic doses
used was also ineffective in the experiments against
murine tumors. Thus, the maximum obtained log tu-
mor-cell kill was not more than 0.43 (Table 2). However,
in combination with NLCQ-1 this log cell kill was im-
proved to up to 1.53, which is biologically meaningful. A
lesser effect (a log cell kill up to 0.91) was observed in
combination with TPZ (Table 3). Multiple dosing with
sufficient time between doses to allow recovery from
paclitaxel-induced systemic toxicity and reestablishment
of tumor hypoxia may be the best way to explore the

synergistic interaction between paclitaxel and NLCQ-1
in the clinic (Fig. 1).

In the experiment against PC-3 human xenografts,
NLCQ-1 alone did not have any effect, even though it
was administered at 10 mg/kg for five consecutive days.
In this case, the initial small median tumor size
(103 mg) in the NLCQ-1-alone group may have been
responsible for limited hypoxia, which was taken care
of by the initial NLCQ-1 treatments. According to the
literature, there is no correlation between stage of
breast, cervical or lung cancer and status of oxygen-
ation [19, 45, 53]. However, Brizel et al. have reported
a positive correlation between hypoxic fractions and
size in sarcomas [3], and Lartigau et al. have reported a
significantly lower mean pO, in N3 neck nodes than in
N2 nodes [24]. There is no information in the literature
for an analogous correlation in prostate tumors, and
specifically in PC-3 xenografts. However, the presence
of hypoxia has been demonstrated in prostate cancer
[29] and a study in PC-3 xenografts with an average
size of about 750 mm?® revealed a hypoxic fraction of
52.3 [25].

Paclitaxel alone at the higher dose (8 mg/kg) inhib-
ited tumor growth (%T/C 28 <40) whereas in combi-
nation with NLCQ-1 caused tumor stasis (%T/C <0 to
—50) from day 19 to day 26 and tumor growth inhibition
thereafter (Table 4 and Fig. 2) without prolonged sys-
temic toxicity (mean body loss < 14.4%). The interac-
tion between paclitaxel and NLCQ-1 against PC-3
xenografts was synergistic, since the log tumor cell kill
produced with the combination treatment (0.95) was
greater than the sum of the log cell kills of the two in-
dividual drugs (Table 4). With regard to the adminis-
tration schedule, NLCQ-1 was chosen to be delivered
i.p. 1.5 h ahead of paclitaxel (given i.v.) since no optimal
administration data were available for this particular
tumor. Even though in our previous experiments against
murine tumors, enhancement in the tumor cell kill was
seen when NLCQ-1 was administered exclusively after
paclitaxel [40, 42], to our surprise, administration of
NLCQ-1 before paclitaxel in this case proved to be
beneficial. This suggests that tumor specificity may be



also important for a synergistic interaction to occur
between NLCQ-1 and paclitaxel.

With regard to mechanisms explaining the beyond
additivity tumor growth delay, preliminary in vitro re-
sults show that enhancement in apoptosis (i.e. increased
caspase 3 activation and nucleosome formation), unre-
pairable DNA damage and persistent inhibition of
DNA, RNA and protein synthesis are some of the
mechanisms involved in the synergism seen between
NLCQ-1 and paclitaxel, when NLCQ-1 was given under
hypoxic conditions to V79 cells previously exposed
aerobically to paclitaxel [41]. Moreover, since the same
schedule-dependent potentiation seen in vitro exists
in vivo, at least with regard to murine tumors [42], it is
quite possible that the above mechanisms may account
in part for the potentiation of paclitaxel in vivo. It is
known that paclitaxel causes mitotic arrest and apop-
tosis, but only the apoptosis and not the mitotic arrest is
correlated with the antitumor effect of paclitaxel [28]. It
is speculated that NLCQ-1/TPZ may trigger apoptosis
in cells arrested in the G,M-phase.

In conclusion, a therapeutic advantage could be
achieved by combining the hypoxia-selective cytotoxin
NLCQ-1 with nontoxic paclitaxel doses against murine
tumors or human xenografts in vivo, and further
studies with various human cancers are therefore war-
ranted.
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